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Waves almost always arise on the surface of a liquid film flowing down an inclined sur- 
face as a result of instability. These waves may have an appreciable effect on interphase 
transfer processes. Thus, with the desorption of hard-to-dissolve gases in the films, the 
mass-transfer coefficient may be increased by more than 100% due to waves [i, 2]. 

The study [3], using an approximation of a thin diffusive boundary layer near a free sur- 

face, obtain a similarity solution to a diffusion problem for a wavy film which was described 
parametrically in the form of integrals. It was analyzed in detail, but the investigators 
showed that the ratio of the integral mass flows in the wavy and nonwavy films approaches a 

constant value. 

Such a solution was also obtained and use was made of the example of sinusoidal waves in 
[4] to analyze the solution in detail. It was shown that when the phase velocity of the wave 
is greater than the liquid velocity on the surface of the wavy film -- the subcritical flow 
regime -- mass transfer is increased due to the presence of transverse velocity pulsations. 

Moreover, as the liquid velocity at the wave crests (which is maximal at these points) ap- 
proaches the phase velocity, the sections of the surface separated by the crests (we will 
henceforth refer to them as cells) become less closely connected in the diffusive sense: It 

is more difficult for liquid to move from one cell containing a more dilute gas solution 

to another cell with a more concentrated solution. 

The present study investigates the effect of the wave form on mass transfer in the sub- 
critical flow regime. We also examine the critical case, when the velocity of the surface 

at the wave crests is equal to the phase velocity of the wave. 

The hydrodynamic problem of several nonlinear waves on a film, observed in experiments, 

has not yet been solved. Thus, as models investigators have taken the profiles of steady trav- 
eling waves [5] from the solution of an equation describing the behavior of long-wave pertur- 
bations on a film with Re ~ i. These profiles coincide with the profiles observed experimental- 
ly in [6]. The amplitude and velocity of the waves was given. The profile of longitudinal 

velocity was assumed to be similitudinous: 

= i,5Uav(X, t)[2y/h@, t ) - - ( y /h (x ,  t))~]. (1)  

Here u is the film velocity averaged over the cross section of the film; y is the normal 
av coordinate, reckoned from the wall to the free surface; x is the longitudinal coordinate; h 

is the instantaneous thickness of the film. The assumption of similarity is consistent with 

the experimental findings in [7]. 

In the approximation of a thin boundary layer adjacent to the free surface, the dimension- 

less diffusion equation has the form 

oo - o o  -oo t o~o (2) 

w h e r e  Pe = q/D i s  t h e  P e e l e t  n u m b e r ;  q i s  t h e  mean f l o w  r a t e  o f  t h e  l i q u i d ;  0 = (c - - C h ) / ( C o  -- 
c h) is the dimensionless concentration; c, Co and_ c h are, respectively, the running, initial 
(at x = O), and surface ~yr = h) concentrations; u is the normal component of velocity near the 

surface; s = <h>/% << i; <h> is the mean thickness of the film; % is the wavelength. 

In Eq. (2) and below, we use the dimensionless variables 

u = u< h)Iq ,  F = v~.lq., x = xl~. ,-y = yl< h> , - t  = tql~.< h) 

and the boundary conditions 
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o(y = h )  = o, o ( =  = o) = 0 ( y  = - o ~ )  = i .  

We will henceforth omit the sign indicating dimensionlessness. From the continuity equations 
and (i) for steady traveling waves with h = h(x -- ct) we have the following expressions for 
u and v: 

u = 1.5(c - -  (c - -  l ) /h) ,  u : (u  - -  c ) a h / a x  - -  (y  - -  h ) a u / a x .  (3 )  

In the new variables 

x : x ,  ~ = x - -  ct, z - -  h - -  y 

and with the use of Eq. (3)~ Eq. (2) can be rewritten in the form 

a8 aO du O@ i aS@ 
u~-  + ( u - - c ) ~ - - z ~  = p~ so: (4) 

Equation (4) is solved with the boundary and initial conditions 

O(z = O) = O, O(x = 0 )  = O(z = o~) = :. ( 5 )  

As was shown in [4], the solution of Eq. (4) satisfying conditions (5) is written in the 
form 

n 

2 S -n~ 0 (z, x, ~) = - - ~  e d~l, '1 = z/8 (x, ~), 
0 

(6) 

where ~(x, T) is determined from the expression 

- [~ o \:/2/ 
8(x,  ~ ) 2 ~ ~ d x / P e ~ ) ( c - - u ) .  (7 )  

The integral in (7) is taken along the characteristic 

x + j" ud ~./(c.-- ~) = O, (8) 
~o 

w h e r e  To i s  t h e  p o i n t  o f  i n t e r s e c t i o n  o f  t h i s  c h a r a c t e r i s t i c  w i t h  t h e  a x i s  x = O. T h u s ,  E~o i s  
t h e  " n u m b e r "  o f  t h e  c h a r a c t e r i s t i c .  C o n s e q u e n t l y ,  we w i l l  h e n c e f o r t h  r e f e r  t o  t h e  g i v e n  c h a r -  
a c t e r i s t i c  a s  t h e  T o - c h a r a c t e r i s t i c .  

S i n c e  u = u ( ~ ) ,  we c h a n g e  o v e r  i n  (7)  f r o m  t h e  v a r i a b l e  x t o  t h e  v a r i a b l e  T, c o n s i d e r i n g  
t h a t  t h e y  a r e  n o t  i n d e p e n d e n t  b u t  i n s t e a d  b e l o n g  t o  t h e  ~ o - c h a r a c t e r i s t i c  ( 8 ) :  

F i n a l l y ,  we h a v e  t h e  f o l l o w i n g  e x p r e s s i o n  f r o m  (6)  and  (9 )  f o r  t h e  i n s t a n t a n e o u s  l o c a l  d i m e n -  
s i o n l e s s  f l o w  o v e r  t h e  wave  s u r f a c e  

Averaging (i0) 

�9 F - :o ]-:/3 
o aO - - u ) | ~ " ( c - - u ) d ~ / P e ~ [  ~ ] . / (x ,  ~) =-- 7 :  z=~ = (c 

along the wave gives us the mean local flow at the point X: 

~o ]-I/2 
-] (x)  = o i (c - u) . ~ ! (c - -  u ) d ~ / P e  e d~. 

(lO) 

(ll) 

To find the local flow at any point (x, T), it is necessary to calculate the integral in Eq. 
(i0). For this, it is sufficient to use (8) to determine the Go-characteristic passing 
through this point. 
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In the subcritical case (c > Umax) , the integrand function in (8) is continuous, and the 
~o-characteristic crosses the entire region {0 < x < ~, -~o < ~ < ~o}, i.e., with movement 

along the ~o-characteristic as x + ~, ~§ -~. Th--e half-line {~ = ~, x > 07 intersects all 

of the characteristics with numbers ~o > ~. In this case, from Eqo (iO) we have 

lira ] (x, ~1) = O. 

~en the velocity of the liquid at the wave crest equals the phase velocity (c = Uma x 
u(n)), the integrand function at the points ~ = n vanishes, and if ~o lies in the range (n -- 
i, n), then the corresponding ~o-characteristic as a whole lies within the half-band {0 < 

x < ~, n -- 1 < ~ < n}. With movement along the ~o-characteristic as x § ~, ~ § n -- i. The 
half-line {~ = ~ x > 0} intersects only those characteristics for which ~z < ~o < n. Thus, 
it is apparent that, i--n contrast to the subcritical case, the upper limit of the integral in 

Eq.(10) is finite, and the local flow is affected only by the points of the given wave cell. 
In fact, since for a given point (x~, ~) there is the relation n -- 1 < ~ j ~o ~ n, then, 

considering that u(~) = u(~ + i), from (I0) we obtain 

]--1/2 
] (X, ~) = (c - -  u ([~])) ~ [:t~ (c - -  u) d~/Pe e , 

[%] 

(12) 

where [ ] represents the fractional part of the number. 

For sufficiently large values of x and finite values of ~, it follows from (12) that 

[ o 

Thus, throughout almost the entire range (n -- i, n), with large values of x the instan- 
taneous local flow becomes a function only of ~, and the mean local flux, accordingly, becomes 

nearly constant. The exception is the neighborhood of the end points of the interval. It can 

be seen from (8) that with almost any finite value of x, as [~] + 0, the value of [go] also 

approaches 0. In this case, from (8) we have 

[S0] 2c (I I ), (14) 
x= .t" ud~/(c - -  u) = lu ",-~ c - -  u" (O) [~]2 / 21 = u'-~ff) ~o] -- ]~-l 

[51 
[~o1 = 2c [~1/(2c + u" (0) x [~1). 

From (i0) and (14) we obtain 

i(x, %) = [Pe ec(i -~- b)3/(nx(l ~- b -~- b2/3))]1/2~ (15) 

where b = u"(0)x[~]/2c. 

As [~] + I, we have an indeterminate form in (13). Evaluating this form, we obtain Eq. 

(15) for j, in which we need to replace b by bi = u"(0)x(l -- [~])/2c. 

From (15) we obtain the physically obvious result j(x, n) ~ (c/x) I/=. In fact, it can 
be seen from (3) that v = 0 and u = c at the points ~ = n, and diffusive flow at these points 
over the distance x should be the same as in a plane film flowing downward at the velocity u. 

Integrating Eq. (ii), we obtain the complete dimensionless mass flow (Sherwood criterion) 

S h =  ( c - - u )  ~ ( c - - u ) d ~ ' / P e e |  d ~ d x =  t - - O ( x ) ,  (16) 
0 0 

where  O(x)  i s  t h e  f l o w  r a t e  mean c o n c e n t r a t i o n  i n  t h e  s e c t i o n  x .  

The e f f e c t  o f  t h e  waves on mass t r a n s f e r  i s  c h a r a c t e r i z e d  by t h e  r a t i o  o f  t h e  mass f lows  
on wavy and nonwavy films [4]: 

Sh/Sho=(3<h>x/2ho) - l /2  ~ ( c - - u )  ~ ( c - - u ) d ~ ' / P e e  d~dx. (17) 
0 0 
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If assumption (I) is valid, then for equal flow rates we have the following expression 
for the ratio of <h> to the mean thickness of the nonwavy film ho 

! 111s 
<h>lho = (c (h - -  i) + l) d~/h 2) . 

For a purely sinusoidal wave h = 1 + a cos 2~, we have constructed the instantaneous lo- 
cal mass flow across the free surface and the mean local flow in Fig~ 1 (curves 1 and 2~ re- 
spectively). The curves were calculated for the values c = 2 and a = 0.4. Curve 3 corresponds 
to the waveless case. Here and subsequently, we chose the moment of time when the wave crests 
wre located at points with integral values of the coordinate x. In Figs. 1-3, the values of 
local flux were plotted in an arbitrary vertical scale. 

It can be seen from Fig. 1 that for several wavelengths the instantaneous local flow is 
nearly a periodic function, while the mean local flow is almost constant. There is then a sud- 

den decrease in the flow, and again for several wavelengths the instantaneous flow is almost 

period. Such behavior of the curves can be explained as follows [4]. For a purely sinusoidal 
wave, the local flow has only one maximum per wavelength. It is located in the neighborhood 
of the trough, so the liquid with a reduced concentration is also located here. When this liq- 

uid reaches the trough of the next (left) cell, there is a sudden decrease in the local flow 
in that trough. The time of transport of any section of liquid along the surface over a distance 

1 

corresponding to one wavelength is determined by the integral Id~/(c -- u) , so such a decrease 

first occurs at the distance x = cfd~/(c -- u) -- i. 0 

When the maximum velocity u approaches the phase velocity of the wave c, the value of 
�9 max 

x ~ncreases and in the critical case becomes infinite, i.e., the cells become diffusively in- 
dependent. 

In the case of essentially nonsinusoidal waves, its profile over one wavelength has sev- 

eral maxima and minima. Local flow is extreme in the subcritical case in the neighborhood of 
each of these maxima and minima for sufficiently large x. 

Figure 2 shows the relations for instantaneous (curve i) and mean (curve 2) local flow 
for a wave having a velocity c : 2.3 and an amplitude a = 0.6. The form of the wave is sho~. 
by curve 3. It is apparent that local flow changes markedly almost between any two wavelengths. 
Some maxims decay more rapidly than others, and the position of the absolute maximum of local 
flow relative to the wavelength changes from cell to cell. This occurs because now the sharp 
reduction in the local maxima is connected not only with the appearance of low-concentration 
liquid from the adjacent cell at the given point, but also with the arrival at this point of 
liquid from adjacent maxima in the cell containing the given point. 

Figure 3 shows values of the instantaneous local (curves 1 and 3) and mean local (curves 
2 and 4) flows for the subcritical (a = 0.5, c = 2.2) and critical (a = 0.636~ c = 2.2) cases, 
respectively for the same given wave form (curve 5). The behavior of curves 1 and 2 is quali- 

tatively similar to the relations shovm in Fig. 2. In the critical case, the instantaneous 
local flow after several wavelengths becomes an almost periodic function. Thus, in the pres- 
ent case (curve 3), the maxima after the second and third wavelengths differ by less than 1%. 

Accordingly, the mean local flow becomes nearly constant after the third wavelengtho It is 
evident that the integral value of Sh for the critical case increases in direct proportion to 
X. 

Figure 4 shows the dependence ofthe flows for a wave which is close to being a sequence 
of solitary tones: over most of the wavelength the film has a constant thickness, and only 

near the crest does film thickness change sharply. Here , a = 0.71 and c = 2~ -- t]he criti- 
cal case. The numeration of the curves is the same as in Fig. 2. 

In the subcritical case, the dependence of the mean local flow on x is nearly a piecewise- 
constant function (curves 2 in Figs. 1-3), despite the fact that the instantaneous local flow 
for nonsinusoidal waves is not nearly periodic (compare curves 1 in Figs. 1-3). Thus, the in- 
tegral mass flow Sh is nearly a piecewise-linear function of x, which is qualitatively similar 
to the case of purely sinusoidal waves. It is with this very piecewise-linear character of 
the function Sh(x) that is associated the linear -- with respect to ~xx-- increase in the ratio 
Sh/Sho on the initial section and its subsequently becoming a constant characteristic of the 
given wave after decaying oscillations (Fig. 5). 
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For a wave of the given form having the velocity c = const, this constant increases as 
the amplitude a approaches its critical value. In the critical case, Sh(x) is a linear func- 
tion. Thus, the ratio Sh/Sho also increases linearly with an increase in ~xx (curve 4 in Fig. 
6). 

With a fixed value of the wave amplitude, the limiting constant decreases with an increase 
in phase velocity. 

Figure 5 shows the dependence of Sh/Sho for waves having the same velocities (c = 2.2) 
and amplitudes (a = 0.4). The wave form corresponding to each curves is shown schematically 
to the right of each curve. With fixed values of amplitude and phase velocity, the asymptotic 
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value of Sh/Sho is less, the more the wave form deviates from sinusoidal. The deterioration 
in mass transfer for such waves is evidently connected with more rapid decay of the maxima of 
instantaneous local flow due to their mutual effect on each other. Furthermore, the maxima be- 
come narrower, since there is an increase in the percentage of wave sections where v = 0, and 
mass transfer takes place only as a result of diffusion. 

Thus, the results obtained show that the mass transfer rate is heavily influenced by all 
three factors: wave velocity, amplitude, and form. Thus, large scatter may be -- and is (see, 
e.g., [i]) -- obtained in experimental data without detailed accounting of the wave situation 
on a film. 

These three factors are related to each other in actual flows [6]: The greater the amp- 
litude of the wave, the greater its phase velocity and the more its form will deviate from 
sinusoidality. Either a decrease of an increase in mass transfer may be seen, depending on 
which of these three factors exerts the greatest effect. 

In particular, the results obtained in [i] now become qualitatively understandable~ It 
was shown in this study that mass transfer decreases with an increase in the period of the 
wave for fixed Re when waves of different amplitudes are generated. In this instance, wave- 
length and wave velocity also increase, and the form becomes more nonsinusoidalo Figure 6 
shows that within the framework of the given model, such a situation is quite possible. Here, 
the velocity and amplitude of the wave are, respectively, equal to 2, 2.1, 2.2., 2.326 and 
0.4, 0.5, 0.6. 0.71 for curves 1-4. The form of the waves is shown schematically to the right 
of each curve~ 

It is evident from the calculations shown in Fig. 6 that if the wavelength of the working 
section is greater than the maximum transitional section in the given case, we obtain a period 
dependence for Sh/gho which is similar to that seen in [i]: Sh/Sho increases with an increase 
in the period. Such behavior of Sh/Sho cannot be obtained within the framework of other mod- 
els, such as the complete mixing model. 

The authors thank P. I. Gesheva for useful comments and discussion of the results~ 
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STABILITY OF UNSTEADY MOTION OF A VISCOUS FLUID BAND 

V. K. Andreev UDC 532.516 

A brief derivation is presented in this paper for the small perturbation equations of 
arbitrary unsteady motion of a viscous incompressible fluid subjected to the action of surface 
forces. The stability of a viscous fluid band is studied on the basis of the equations ob- 
tained. 

I. PERTURBATION EQUATIONS 

We assume that the functions u(x, t), p(x, t) are the velocity vector and pressure of a 
certain unsteady motion of a viscous incompressible fluid. The motion is defined in a domain 
gtC R 3 with boundary F t . Within ~t' the u, p satisfy the Navier--Stokes equations 

ut + u . v u  + (l/p)Vp = vAu + g ~ ,  t); ( 1 .1 )  

d i v u  = 0 ,  x ~ Q t ,  t ~ O ,  (1 .2)  

and on F t the conditions 

~o --  p)n + 2pvD(u)n = 26Hn; (1 .3)  

/~ + u . v / =  0, x ~ rt ,  t ~ 0 ,  ( 1 . 4 )  

where v > 0, 0 are the constant viscosity and density, n is the unit vector of the external 
normal to F ; ~ > 0 is the surface tension coefficient, D is the strain-rate tensor with ele- 
mentsDij = ~ui/~x j + ~u./~xi)/2 (i, j = i, 2, 3); H is the mean curvature of the surface F t 
(it is considered that H j> 0 if F t is convex within the fluid; po, g are the given external 
pressure and the mass force vector. Condition (1.3) expresses the equality of all forces act- 
ing on the free boundary while (1.4) denotes that F t consists of the same particles (the equa- 

tion f(x, t) = 0 gives the free boundary Ft). 

At the initial instant 

O~l~=o = ~,  ul~=o = Uo~), rth=o = r ( 1 . 5 )  

and the consistency conditions are satisfied 

div Uo = 0~ ~.D(uo)n = 0,: ( l .6) 

where T is an arbitrary vector tangent to F. 

Let us note that for ~ = 0 the question of single-valued solvability of the problem posed 

is resolved affirmatively in [i], where u, p, and F t belong to certain Holder classes (see 

[2] also). 

Let the solution u(x, t), p(x, t) of the Navier--Stokes equations satisfying (1.3) and 
(1.4) on Ft, the initial conditions (1.5) and the consistency conditions (1.6) be known in the 
domain ~ . If (~i, ~2) § x(~1, ~i, t)It- o is the parametric assignment of the initial surface 
F~ C 3 w~ile the velocity vector u is a sufficiently smooth function, then [3] it can be con- 

sidered that even F t is parametrized by the same parameters (~, ~2): x = x(~, ~2, t). 

Let us consider another solution u, p in the domain ~t with the initial field uo = Uo + 
Uo, div Uo~ = 0. Let x = x + X(x, t), X is the fluid particle displacement vector, Xlt= o = O, 

such that ~tlt=o = ~" We set 
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